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An analytical study is made of simple models of steady fronts in the atmosphere 
in which the temperature field is subjected to deformation as the fluid moves 
downstream in a large-scale horizontal flow. One fundamental approximation is 
made and then a Lagrangian method, in which fluid particles are identified by 
conservation of entropy and potential vorticity, and by Bernoulli’s theorem, 
enables the steady problem to be solved. Solutions for models of surface fronts 
and upper tropospheric fronts are compared with those obtained from a model 
in which there is no variation along the front and the frontogenesis proceeds in 
time. If the thermal wind is comparable with the basic wind, and the potential 
vorticity is not negligible in some sense, the frontogenesis is increased where the 
thermal wind opposes the basic flow but, decreased where it reinforces the flow. 

1. Introduction 
The idea of the atmospheric front has been an important weapon in the con- 

ceptual armoury of the synoptic meteorologist since its introduction by 3 jerknes 
and the Norwegian school of meteorologists in 1919. They envisaged a sloping 
surface of discontinuity between the cold polar air and warmer air of temperate 
latitudes. On this surface disturbances develop and these are the familiar cyclones. 
With the advent of more upper-air observations and on the theoretical side the 
development of quasi-geostrophic theory, the emphasis shifted. Cyclones 
formed by baroclinic instability in a region of temperature gradient (Charney 
1947; Eady 1949) became the fundamental entities. As a secondary phenomenon 
in these cyclones, fronts tend to form and dissipate. The deformation fields in 
which fronts form may also be associated with other phenomena such as 
orographically induced long waves. On some occasions, disturbances growing 
on fronts much as described by Bjerknes can be very important. Because of the 
rapid change in weather across atmospheric fronts, and the rainfall at  them, their 
formation and structure is still of great interest. 

In  Hoskins (1971), Hoskins & Bretherton (1972) and Hoskins (1972), here- 
after referred to as I, I1 and 111, the author introduced simple models in which 
large-scale horizontal flow patterns perturb the temperature field and the 
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atmosphere responds in a nonlinear manner. One model, which we here refer 
to as the time deformation model, considers a temperature field independent 
of y compressed by the ‘deformation field’ u = - ax, v = ay. There are two basic 
kinds of atmospheric front. The surface front has very strong gradients near 
the surface of the earth, but these die away rapidly above the surface (Sanders 
1955). The upper tropospheric front has large gradients in the upper troposphere 
which have been shown to be connected with the subsidence of upper tropo- 
spheric and stratospheric air (Reed & Danielsen 1959). The formation of the 
surface front was modelled by a time deformation model with an atmosphere of 
initially uniform static stability representing the troposphere. The upper tropo- 
spheric front model had two regions of static stability representing the tropo- 
sphere and stratosphere. Comparison with observation suggested the realism of 
these fronts. 

The fundamental approximation in I, I1 and I11 was that the wind along 
the front was in geostrophic balance with the pressure gradient across the front 
(see $ 8 2 . 2  and 2.3). Kelvin’s circulation theorem then suggested the use of 
a semi-Lagrangian co-ordinate in the cross-front direction. The models were 
solved using conservation of entropy and potential vorticity. 

I n  this paper we consider the formation of fronts in deformation fields like 
the above field, but we now consider the steady problem in which this fronto- 
genesis occurs downstream. The front itself is independent of time, but fluid 
particles experience frontogenesis as they move through the system. A third 
conserved quantity in addition to entropy and potential vorticity is provided 
by Bernoulli’s theorem. Making the same fundamental approximation as in the 
time deformation model, the three Lagrangian tracers enable solutions to be 
found given initial conditions at one cross-section upstream. The numerical work 
is simplified by the introduction of the semi-Lagrangian co-ordinate used in the 
time deformation model. Solutions are obtained and comparisons made with 
those from the time deformation model. Detailed comparison of the latter solu- 
tions with observed fronts was made in I ,  in particular, and will not be repeated 
here. 

The equations of motion are introduced in Q 2 .  Various approximations based 
on the dominance of Coriolis over inertial effects and their relevance in the 
frontogenesis problem are discussed. When atmospheric motions change the 
temperature distribution, additional motions are induced. However, in $ 3  we 
first consider the possible steady-state deformation fields and their advection 
of a passive scalar. The Lagrangian study of a general model of frontogenesis is 
performed in $4.  I n  $ 5  this is specialized to a one-region model to discuss the 
formation of surface fronts. Consideration of a two-region model in Q 6 allows 
investigation of upper tropospheric frontogenesis. 

2. The basic equations 
2.1. The primitive equations 

When the horizontal scale of motion of a rotating atmosphere is much larger 
than the vertical scale, to a very good approximation the horizontal component 
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of the rotation and the vertical component of acceleration may be neglected. 
The use of the pressure p as the vertical co-ordinate then makes the form of 
the pressure force and continuity equat,ion similar to that for an incompressible 
fluid. As was done in the previous studies, the vertical co-ordinate used here is 
a function of pressure: 

z = [ I -  (P/Po)"l cp  80 l% 

where po and 8, are standard surface pressures and temperatures, cp = specific 
heat at constant pressure, K = R/cp and R is the gas constant. The top of the 
atmosphere ( p  = 0 )  is z = x, = cpOO/g.  If the potential temperature 8 is defined 
by the relation 

entropy = cp In 8, 

8 is conserved on a fluid particle in the absence of heat sources and sinks. It is 
related to the temperature T by 

A pseudo-density may also be defined : 

0 = T(PO/P)". 

r ( ~ )  = po(p/po)l-~ = p0[i  - gZ/cp e0i1/~-1, 

where po is a standard surface density. Using the equation of state for a perfect 
gas, it is easily shown that increments in physical height 8 are related to those 
in z by 

For an adiabatic atmosphere (8 = 8,) z = 6 and, quite generally, over much of 
the atmosphere z may be considered as approximately the physical height. 

eoa8 = oaz ,  pa8 = raz .  

The inviscid adiabatic equations may be written as 

(2.1) I Du/Dt +fk x u + V2$ = 0, $, = g8/Oo, 
DB/Dt = 0, V.  (w) = 0, 

where w = Dz/Dt = - (Dp/Dt)/gr, k = unit vertical vector, 

u = ( u , v , O ) ,  v = u+wk, 

v, = (a/ax, spy, o), v = v, + k aiaz, 
D/Dt = a/at + v .  V, $ = geopotential = g8, 

f = Coriolis parameter = 2 x vertical component of rotation, 

here taken as independent of position. 

A t  z = c,O,/g, clearly we must have w = 0. A t  the surface of a smooth earth 
we should have D$/Dt = 0. But the surface pressure varies only within about 5 %. 
Also, if U is a speed characteristic of meso- and large-scale atmospheric systems, 
we have U < speed of sound. Then to a reasonable approximation we may use 
as a lower boundary condition 

w = O  at z = O .  

It has recently been shown in one frontal study (Hoskins 1973) that the error 
thus introduced is indeed negligible. 

12-2 
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2.2. The geostrophic and quasi-geostrophic approximations 

Let L and U denote scales for horizontal distance and velocity, and suppose 
that DIDt N UIL. Then the ratio of the acceleration terms to the Coriolis force 
terms is the Rossby number UlfL. For large-scale motions in the extratropical 
atmosphere of the earth this number is generally small. To a first approximation 
the Coriolis force balances the pressure force and the velocities are geostrophic: 

Combining these with the hydrostatic equation gives the so-called thermal-wind 
relations for the vertical shears in horizontal velocity : 

fuz = -9e,/~o, f., = 9~,/4l .  

If the potential temperature decreases polewards, the westerly wind increases 
with height. 

In  the quasi-geostrophic approximation (see, for example, Pedlosky 1964), 
the expansion is carried to second order in Rossby number to obtain a predictive 
equation. In this approximation, the vertical component of vorticity calculated 
from the geostrophic velocities is advected by the geostrophic motion and changed 
only by stretching of the basic vorticity f by a vertical velocity. This vertical 
velocity is calculated from geostrophic advection of the temperature field, 
assuming a static stability dependent only on height. 

An atmospheric front is a region in which the Rossby number is not small and 
the failure of 'quasi-geostrophic theory to produce realistic fronts is not sur- 
prising (Stone 1966; Williams & Plotkin 1968). 

2.3. The cross-front geostrophy approximation 

We now consider a frontal situation in which gradients in the x direction are 
much larger than those in the y direction. Let L,, L,, U and V denote length 
and velocity scales in the two horizontal directions. Taking UIL, as a measure 
of DIDt, the ratios of the accelerations to the Coriolis force terms in the two 
horizontal momentum equations are 

u2 v v -- 
v2 fL,' fL,' 

In such a frontal situation the latter number, a dimensionless measure of 
relative vorticity, may be of order one. But, relative to a front oriented in the y 
direction, it is found that U < V .  To describe the production of a realistic front, 
the long-front acceleration may not be ignored. However, until the front 
becomes extremely strong, the cross-front acceleration may be neglected. This 
implies that the long-front wind is in geostrophic balance with the cross-front 
pressure gradient (see figure 1). We retain the thermal-wind balance 

fv, = (SlSO) 6,. 

The consistency of this approximation has been demonstrated in ea,rlier studies. 
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Du/Dt neglected 

u not geostrophic 

FIQURE 1. A schematic illustration of the cross-front geostrophy approximation. Using 
the usual meteorological symbolism, the scalloped line parallel to the y axis represents 
a front. The gradients perpendicular to this line are much larger than those parallel to it. 

FIQURE 2. Basic horizontal velocity fields providing deformation. 
(a )  m y .  (b) ax ebv. (c) ax sin by. 

3. A deformation field 

velocity field derived from a stream function 
We first consider the advection of a passive scalar 0 by a basic horizontal 

@b = ILA(Y)* 

Then ?hb = -XAy, V b  = A .  (3.1) 

A; - AA,, = constant = a2, say, (3.2) 

Insertion in (2.1) shows that this is a possible solution only if 

and then $b = fxA - +A2 - Qa2x2. 

The solutions of (3.3) are of the form 

ay, aebu (a = O ) ,  asinby (a =ab). 

Streamlines of the three flows are shown in figure 2. 



182 B. J .  H O S k i N S  

In  a flow of this form, a line element initially parallel to the x axis remains so. 
If its length is L, then LA is constant following the element. The time-independent 
solution for the distribution of the passive scalar O is 

8 = a($.,) = ~ ( x A ) .  

Clearly the advection of potential temperature by the basic deformation 
field is not such a simple problem. The above solution should however be valid 
when the implied gradients of potential temperature are small enough in some 
sense, e.g. for sufficiently small y in the fields in figures 2(a) and (c). When the 
implied gradients are large we expect that nonlinear distortions similar to 
atmospheric frontogenesis should occur. We shall consider situations in which 
temperature variations are negligible except in some region near x = 0. Thus, 
for large x, we may assume passive advection. 

4. Analysis of the time-independent model 
4.1. General 

The equations of motion (2.1) in general describe the conservation moving with 
fluid particles of the following two properties. 

(i) Potential temperature O (conservation of entropy). 
(ii) Ertel's potential vorticity q = T-l(fk + V x u) . VO. 
In  steady motion, Bernoulli's theorem gives a third conserved property. This 

(iii) B = q5+4(u2+v2)+cpT. 
property, which we shall call the Bernoulli function, is 

The first term is the potential energy. The second term is the kinetic energy and 
the third the enthalpy (internal energy plus p/p). Since the hydrostatic relation is 

and the co-ordinate z is such that 
0 = 80q5zls 

the three conserved properties may be written in terms of position, q5, u and v: 

where k is an arbitrary function. 

4.2. Cross-front geostrophic analysis 

Without loss of generality, in (2.1) we set u, v and q5 equal to their deformation- 
field values plus extra terms, 

u = -xAY+u', v = A+v' ,  # = q5b-1-$', 

and obtain for the horizontal momentum equations 

D u ' / D t - A y u ' - ~ A y y ~ ' - f v ' + $ ~  = 0, 

Dv'lDt + A p '  + fu' + q5; = 0. 
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The cross-front geostrophy approximation here is to neglect the first three terms 
in (4.1) and set v f  = ui, where 

Clearly this is valid only for 1x1 < 1 f/A,,J. Under this approximation, the three 
conserved quantities may be written in terms of position and q5f only: 

fu; = &- 

(if s v o  = $%? 

(ii) f s m l  = +r - $2 + (f2 + $2 &I9 

(iii) B = q5b+y5f  +&(A + s s ; / f ) 2 + + ~ 2 x 2 - z ~ ~ - t k ( ~ ~ ) .  

Under the cross-front geostrophic assumption, the cross-front velocity dis- 
appears from these relations. 

If the state of the fluid is known a t  one value of y (yr ,  say) and the flow is 
downstream then the three Lagrangian markers, entropy, potential vorticity 
and the Bernoulli function, enable a solution to be obtained. From the section 
at yI, q is known as a function of B and 8 in the interior of the fluid, and 19 is 
known as a function of B on horizontal boundaries. A numerical solution using 
iteration is, in principle, possible. 

4.3. The geostrophic co-ordinate 

As described in detail in 11, in order to make analytical progess in the previous 
studies of nonlinear frontogenesis, i t  was necessary to introduce a new independ- 
ent variable in the x direction: = + v;/f. 

Instead of q5f, a new dependent variable 

CJ' = #f + &J;2 

was also considered. In  the problem considered here, a solution could be obtained 
without a co-ordinate transformation. However, the conserved quantities and 
hence the solution by numerical techniques are simplified if the transformation 
is made. 

The Jacobian of the transformation to X space is the non-dimensional vertical 
component of absolute vorticity under the cross-front geostrophy approximation: 

C/f  = 1 +&/f = [I - v;x/f]-? 

It is convenient to introduce Y ,  2, and T to denote y, z and t when using X as 
the independent variable in the x direction. It may be shown that the three- 
dimensional gradient of @ in X space is identically equal to that of q5f in x space. 
In  particular, 

fv; = a),, g@/Bo = CJ'Z. 

Further, it  may be shown that q = r1 V Z .  
It may th'sn be verified that the conserved quantities can be written more simply 
in terms of position and CJ: 

(i) 

(ii) 

(iii) 
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The state of the fluid a t  Y = Y,, say, determines the functions q(8, B )  in the 
interior and 8(B) on horizontal boundaries. Then, at  any Y ,  

with 8 = O(B) on horizontal boundaries. Thus the problem may be solved 
numerically by iteration. 

The use of X simplifies the constraints, and i t  is a stretched co-ordinate for 
regions of large vorticity such as fronts. This again makes numerical solution 
much easier. Since the approach to a discontinuity is just given by Q x X / f 2 - +  1 
(5  -+ a), it  is suggested that the nonlinearity of the original equations contains 
a tendency to produce f?ontal discontinuities in a finite time. This process was 
described in 11. 

It should be noted that the solution a t  a particular value of Y depends on 
the basic deformation field only through the local basic velocity A (  Y ) .  It does 
not depend on which of the three deformation fields is present, or on the rate 
of deformation. This is clearly associated with neglecting the acceleration in the 
x direction as was done in the cross-front geostrophy approximation. Thus the 
solutions a t  particular cross-sections shown below are independent of the details 
of the deformation field and depend only on the deformation having taken place. 
Since the explicit X dependence is only linear in B, these solutions are also 
independent of the position of the axis of the basic deformation field (x = 0 )  
with respect to the temperature field. 

The Jacobian of the transformation to (B, 8) co-ordinates from (X, 2) CO- 

ordinates is 

Thus the transformations to ( X ,  2) co-ordinates and then to (B ,  8 )  co-ordinates 
are valid for a finite, positive vertical component of absolute vorticity, positive 
potential vorticity and no reversals in the progress downstream. 

Finally, to aid the setting of initial conditions and side boundary conditions 
well away from the region of large temperature gradients, we note that the 
condition that there is zero total perturbation momentum in a fluid column is 

fv0z = frvqlC. 

5. One-region model 

rv,,dZ = 0. 
~ o z =  

5.1. The model 

(4.3) 

To find the functional relations between q, 8 and B, we consider a cross-section 
at Y = YI at which the temperature gradients are so weak that the vorticity of 
the associated winds is negligible compared with f, and 8 is being advected as 
a passive scalar. In  this one-region model we take the Brunt-VaisisBlii frequency 
N to be uniform a t  Y = Y,, where 

gae do 

Therefore P = sofN2/[gr(ZI)1 

N2 = _ _  = -- 
8dh 8,dZ' 

and (W,, 2,) = ~oN2Zz lg  + @,(XI/LI) ,  
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where 0, is a known function with 

[O,(X/L)]Em = A0, {d[0,(X/L)]/dX},,, = A0/L. 

Integration with respect to Z shows that we may take 

@ ( X I ,  2,) = W 2 - q  + (2, - h) (g/0,) @,(X,/L,) + gh. 

h is chosen so that the zero-total-momentum condition (4.3) is satisfied. Taking 

k = (s/Oo) h(O - 0Oh 
the Bernoulli function is 

B(X , ,Z I )  = fX,A,+N2ZI(h.-iZ,). 
Therefore, a t  Z = 0, = @,(B/B,), 

where B, = fL,A,, and a t  the upper horizontal boundary Z = Z,, say, 

Further, q(B, 6 )  = 0ofN2/[9r(z,)l, 

where ZI(B,  0) is a solution of the transcendental equation 

Since B ,  is conserved in passive advection, the functional forms are independent 
of the choice Y = Y, provided that it is in the region of passive advection. 

At any Y downstream, tlhe solution may be obtained by solving (4.2), which 
here becomes 

with 2, given by (5.3) and boundary values (0,/g)QZ given by (5.1) and 
(5.2), where 

B = f x ~  + (@ -gz) - (g/e,) (e-0,) ( 2 - h ) .  (5 .5 )  

Since in this section we are interested in studying the formation of surface 
fronts and in the atmosphere the stability increases markedly above the tropo- 
pause, we place our upper boundary a t  Z = H < 2,. The Boussinesq-type 
approximation of replacing r ( Z I ) / r ( Z )  by unity in (5.4) is also made, and its 
validity in one example will be checked. For the order-of-magnitude arguments 
below, we note that h = O(4H). 

1 2 3 

5.2. Dimensionless parameters and comparison with previous work 

An upper bound on the magnitude of the thermal wind v' a t  the surface may be 
obtained by assuming passive advection of the potential-temperature field. Com- 
parison with the basic y velocity then gives the following condition that the 
flow should be downstream : 

p = ghAO/O,BI < 1. 
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I n  the time deformation model only the case $b = axy was considered. If 
0 was initially independent of Y ,  it remained so. The equations were identical 
with those above except that only the first term of (5.5) occurred in B. I n  this 
term, A( Y ) ,  which is a measure of the deformation with distance downstream, 
was replaced by eaT, a measure of the deformation with time. When it is a good 
approximation to neglect the extra terms in B, then the solutions for downstream 
frontogenesis are the same as those for frontogenesis in time. There are two 
situations in which this should be valid. 

(i) When the thermal wind is negligible compared with the basic velocity; 
then terms 2 and 3 in (5.5) are each negligible compared with term 1. This con- 
dition is p 6 1. 

(ii) When terms 2 and 3 tend to cancel each other. The Lsplace equation (5.4) 
suggests that this is consistent if the length scale L of the temperature field on 
the boundaries is much larger than the 'Rossby radius of deformation' N H / f .  
But for frontogenesis to occur, the vorticity of the wind derived from the thermal- 
wind relation must be comparable with the Coriolis parameter: 

1 g ae fe,-ph -f. 
Using this relation to estimate L, the condition becomes 

aze 6 Ae, 

where A,e = OoN2H/g is a measure of the vertical potential-temperature dif- 
ference in the passive advection state. 

The special case of zero potential vorticity ( N  = 0,  A,8 = 0 )  solved analytically 
in I1 is an exact solution of the present problem also. The potential temperature 
is a function of X only and there is exact cancellation between terms 2 and 3 
in B.  The solutions exhibited previously showed the formation of surface fronts 
which were remarkably realistic considering the simplicity of the model. 

5.3. Numerical solutions 

The general method of solution is a numerical relaxation. For a fixed A ( Y ) ,  
a finite region of the X, Z plane is covered by a uniform grid. The boundaries 
a t  constant X are chosen to  be away from the region of temperature contrast so 
that  on them passive advection is a good approximation. Taking as initial 
conditions that CD has its passive-advection value everywhere gives values for 
B and 8, everywhere, and hence 8 on boundaries and q in the interior as a func- 
tion of position. Using these values, we relax towards a solution of (5.4). After 
a number of iterations, new values of B are found from (5.5) and of Z, from (5.3) 
in the form 

zy+1= 8 - 0 .([B" - ~ 2 . p  I (h  - @ ? ) I / ~ I ) ,  

where the superscript n + 1 refers to the new value and n to  the old value. Thus 
new values of 8 on the boundaries and of q in the interior are found. The process 
is repeated until the required convergence is obtained. If the Boussinesq approxi- 
mation is made, then the calculation of Z, is omitted. When a solution for 0 in 
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' 300 km ' 
FIGURE 3. Solution at the cross-section of the one-region model at A = 40 ma-'. - - -, 
contours of long-front velocity drawn every 4 ms-'; ~ , contours of potential tempera- 
ture drawn every 2.4 OK. 

X space has been obtained, vi and 0 are obtained by horizontal and vertical 
differencing and the transformation to physical space performed : 

x = X-V$ 

We now consider an example in which neither of the conditions (i) and (ii) is 
met. We choose as in I 

H = 8 km N 300 mb, f = iO-4s-1, g/0, = & ms-2 'K-l, 

N = lo-2s-1, O,(X/L) = (AO/m) tan-l (n-X/L), A0 = AzO = 24OK. 

There is cold air at x = - co and warm air a t  x = + co. The thermal wind a t  the 
surface opposes the basic flow and that a t  the 'lid' reinforces it. We choose B, 
so that /3 = 0.917 and the surface thermal wind is only a little smaller than the 
basic wind. 

The solution a t  the cross-section a t  A = 40ms-l is shown in figure 3. Near 
the surface, the positive values of the vertical component of relative vorticity 
are larger than the negative values. The values of positive vorticity and tempera- 
ture gradient are largest a t  the surface and fall off rapidly with height. A t  each 
level, gradients are a maximum in a region whose slope is approximately one in 
one hundred. This surface front is very similar to those described in the previous 
studies and compared there with atmospheric fronts. The maximum absolute 
vorticity a t  the surface is approximately 4f. This value was attained in the 
previous models a t  a deformation equivalent to A = 60ms-l. In  contrast, the 
frontogenesis at the rather unrealisitic lid is retarded compared with the time 
deformation model. The maximum absolute vorticity there is only 1.5f. 

In  figure 4 are exhibited the Lagrangian co-ordinates B and 0, together with 
the ( x , z )  motions of some fluid particles from their position a t  A = 32ms-1. 
At that cross-section, the maximum absolute vorticity was approximately 2f. 
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- -  t C  I d - - * .  

400 km 

FIGURE 4. Contours of the Bernoulli function (solid lines) and potential temperature 
(dashed lines) a t  A = 40 ms-l, together with the cross-front motion of some fluid particles 
from A = 32 ms-1. The motion implied by the basic deformation field alone is shown be- 
neath the lower surface. 

Comparison with the basic deformation shown beneath indicates the enhanced 
convergence a t  the surface front and strong upward motion. The up-gliding of 
the warm air and down-gliding of the cold air are also evident. If the deformation 
occurs in the first basic stream function with a = 10-5s-1, then the distance 
between the cross-sections is 800 km. Air near the surface front takes approxi- 
mately one day to travel this distance. The near coincidence of the B and 8 lines 
in the region of the surface front indicates the small value of the Jacobian of the 
transformation there. 

Solving the problem for various values of A ,  and using the same basic deforma- 
tion field, yields the description of the motion of fluid particles a t  the surface 
given in figure 5.  Again the strong convergence a t  the surface front is evident. 

Also, this model predicts infinite vorticity and the formation of frontal dis- 
continuities a t  a finite basic deformation ( A  - 45 ms-l). This will be commented 
on below. 

This problem for A = 40 ms-l was solved also without making the Boussinesq 
approximation. The ratio r ( Z I ) / r ( Z )  varied smoothly between 0.94 and 1.07 and 
the solution differed little, confirming the validity of the Boussinesq approxima- 
tion in the surface frontogenesis model. 

If we now consider the problem with the warm air at x = - CQ and cold air 
at x = + CQ, the thermal wind opposes the basic flow a t  the lid and reinforces it 
at the surface. As may be anticipated, the surface frontogenesis is retarded com- 
pared with the time deformation solution. The lid frontogenesis is increased. 

The final one-layer model to be discussed is as above but with A8 = 6 OK. Then 
p = 0.229, so that the thermal wind is expected to be much smaller than the 
basic wind. Unrealistically large values of A are required to obtain real fronto- 
genesis. With the thermal wind opposing the basic flow at the surface, and 
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I I I I I * x 

FIGURE 5. Streamlines at the surface taking l//* = my. The tick marks 
indicate spacings of 800 km on the axes. 

A = 160 ms-1, the maximum values of the absolute vorticity at the surface and 
lid are 2.2f and 1-8f respectively. The smallness of the asymmetry between the 
surface and lid is in agreement with the condition (i) for negligible difference 
from the time deformation solution 

6.  Two-region model 
6.1. The model 

To describe the formation of upper tropospheric fronts, we consider a model with 
two regions of uniform stability. The large-stability region above (region 2) repre- 
sents the stratosphere and the low-stability region below (region 1) represents 
the troposphere. The surface of discontinuity between the two regions models 
the tropopause. Given the initial conditions at Y = Y,, the potential temperature 
8 is known as a function of the Bernoulli function B on the surface, the tropopause 
and the lid. The ratio ,u = ~(2 , ) /~ (2)  is known as a function of 6, B and 2. The 
velocity is continuous across the tropopause, and so @ must be continuous across 
this boundary, whose position is unknown. In  the two regions we have 

The problem is thus a closed one. 
In  the solutions described here, the initial slope of the tropopause is such that 

the potential-temperature gradient a t  the lid is zero and no frontogenesis will 
occur there. Thus, a t  Y = Y,, the height h, of the tropopause is a function of 
the surface temperature 0,. In a manner similar to the one-layer model, we take 
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Since h, is a function of O,, the zero-total-momentum condition implies that h 
is a slowly varying function of 0,. To an extremely good approximation, this 
variation is linear: 

h = ho+d3,. 

In  the solutions exhibited here this variation is included though its effect has 
been found to be negligible. As before, we choose 

and then the Bernoulli function is 

B ( X z , Z z )  = f X z A z + N ~ Z z ( h , - Q Z z ) - s O , .  

In  the upper layer, since the lid temperature 0, is uniform, the Bernoulli function 
is not required. The ratio ,u is known as a function of 8 and 2 since 

6.2. The numerical scheme 

The problem is solved by relaxation as in I11 and 3 5.3. The major difficulty is 
that the position of the internal boundary is unknown. It is fixed and 15 iterations 
performed, demanding only continuity of <D and 0 across it. New values of the 
Bernoulli function, and thus of the correct potential temperature, on it are 
then calculated. Comparing these with the actual values in the vicinity, the 
tropopause is moved such that the values of potential temperature on it are 
likely to be nearer the correct ones. 

6.3. Three solutions 

The initial temperature distribution and the values of constants used for the 
solutions below are as in experiment 4 in I and in 111. There is a large surface 
potential-temperature contrast of 49 O K  and a weak minimum in potential 
temperature on the cold side of the transition zone. The compensating initial 
tropopause is a t  293mb on the cold side, descends to 304mb a t  the minimum 
in potential temperature and rises to 200mb on the warm side. The constants 
used are 

iv1 = io-2s-1, N, = 3 x io-2s-1, f = 10-45-1, 

B,/g = 30m-Is2"K, R = 287m2s-20K-1, H = 13-1 km (lid at 135mb). 

(i) The first solution is for a case in which Bz is chosen such that the thermal 
wind near the tropopause reinforces the basic flow and that at the ground opposes 
the basic flow but is not as large. In  figure 6 is exhibited the solution for the large 
value A = 157ms-l, which with the B, chosen implies a basic deformation 
equivalent to the NB 6 model of 111. A frontal discontinuity has formed at  the 
surface. The maximum surface thermal wind (63 ms-l) is, indeed, not comparable 
with the basic wind. Comparing the tropopause with its passive-scalar shape 
shown above, we note the descent of a tongue of stratospheric air and the forma- 
tion of strong gradients in the region of the tongue. This is very similar to NB 6 
though the development has not proceeded as far. The maximum descent is 
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FIGURE 6. Solution a t  the cross-section of the two-region model (i) a t  A = 157 ms-l. - - -, 
contours of long-front velocity drawn every 10.5 ms-’; -, contours of potential tempera- 
ture drawn every 7.8 O K .  Above is shown the shape the tropopause would have had if 
the fluid had contracted passively under the basic deformation field. 

1 l l m b  compared with 128mb and the maximum absolute vorticity a t  the 
tropopause 3.7f compared with 4-6f. 

To show the cross-front motions involved in the development, figure 7 ex- 
hibits some fluid particle motions from the cross-section a t  A = 118 ms-l. There 
the maximum descent is 74 mb and the maximum absolute vorticity 2.7f. These 
cross-front motions are qualitatively identical to the schematic picture presented 
by Danielsen (1968), synthesized from his synoptic studies. 

(ii) The second solution is for the same case as the f i s t  except that  B, is 
two-thirds of the value used there. We show in figure 8 the solution a t  the cross- 
section a t  A = 79 ms-l, at which the deformation by the basic field is the same 
as a t  A = 11 8 ms-l in (i). The maximum thermal wind a t  the surface is 77 ms-l, 
so that the downstream condition is only just valid there. A frontal discontinuity 
has formed a t  the surface. The development of the upper troposphere is much 
smaller than in (i), with a maximum descent of 68 mb and a maximum absolute 
vorticity 2.3f. 

(iii) The third solution is for the same case as the second except that  the 
temperature contrast is reversed so that the thermal wind opposes the basic wind 
at the tropopause, and reinforces it a t  the surface. The solution a t  the cross- 
section a t  A = 79 ms-1 is shown in figure 9. The maximum tropopause descent 
is 101 mb and the maximum absolute vorticity 4.0f. There is a sharp change in 
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FIGURE 7. Two-region model (i). Cross-front motions from A = 118 ms-1 to A = 167 m 
The basic deformation motion is shown below the lower surface. 
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FIGURE 8. Two-region model (ii) at A = 79 ms-1. Notation as in figure 6. 
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FIGURE 9. Two-region model (iii) at  A = 79 ms-1. Notation asin figure 6. The ‘undisturbed’ 
tropopause shape would be the reflexion of that shown in figure 8.  

tropopause slope, which even in X co-ordinates means that the relaxation pro- 
cedure has to be performed carefully. The surface front has not developed at  this 
st,age. 

7. Discussion 
The above solutions do not differ greatly from those found previously using 

the time deformation model. In  that problem, the frontogenesis was not de- 
pendent on the direction of the thermal wind. However, the solutions given 
here for the downstream frontogenesis model suggest that, in this model, the 
frontogenesis can be modified. The conditions for this to occur are that the 
thermal wind is comparable with the basic wind, and the vertical potential- 
temperature difference through the depth of the troposphere is of the same order 
as the temperature difference across the baroclinic zone. The nonlinear fronto- 
genesis described is increased where the thermal wind opposes the basic 
deformation field and decreased where it reinforces it. This may be understood 
by considering (5.5) with variables represented by perturbations from standard 
values a t  that level: 

o = e ,+wo,z /g+o’ ,  a = gz+pw2+a’. 

Then, a t  Z = 0, B, = f A  

But the condition A,O - A0 implies (see 8 5.3) that the interior potential- 
temperature distribution is modified owing to the necessity for conservation of 
potential vorticity. The modification is such as to produce weaker temperature 
gradients. Therefore 

lhO;l 2 if” O&dZl 
1 0  

13 F L M  64 
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and both have the same sign. Neglecting the last term in (7.1), this implies that  
for A positive the cross-front gradient of B is increased for positive gradients of 
potential temperature and decreased for negative ones. A similar argument 
shows that at the tropopause the cross-front gradient of B is increased or de- 
creased according as the potential-temperature gradient is negative or positive. 

The approximation of cross-front geostrophic balance will no longer be valid 
where the fronts described in this paper become extremely strong. We may con- 
sider that  the frontogenesis is occurring in a field of type (iii) such that the 
maximum frontal gradients are small enough for the approximation to be valid. 
The solution downstream from that point is identical to  that upstream as the 
cross-front accelerations have been neglected. Alternatively, as described in the 
earlier papers, we may estimate the stage a t  which cross-front accelerations 
become important. Assuming reasonable values for the deformation fields, it is 
found that the real restriction on these models is the neglect of mixing effects. 
Since in a strong front the Richardson number - fls, these effects must be 
important by the time that the absolute vorticity is 5 f. However, we may say 
that there is a tendency for discontinuities to form a t  surface fronts, and for 
sharp upper-air fronts to form, with only a finite externally imposed deformation. 

This work was performed when the author was in the Advanced Study Program 
of the National Center for Atmospheric Research. Much of the background 
originated in discussions with Dr Francis Bretherton. Thanks are also due to 
Dr Stephen Fels for suggesting clarifications in the manuscript. Support was 
provided through the Geophysical Fluid Dynamics Laboratory/NOAA Grant 
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